Modeling Cell Temperature and Performance of Photovoltaic Systems

Ty Neises
Solar Energy Lab, UW-Madison
Professor S.A. Klein, Professor Doug Reindl

Motivation for Adaptable Cell Temperature Model

- Cell temperature affects panel efficiency:
 PV performance models typically require cell temperature inputs.
- The mounting of a panel can vary and affects the cell temperature.
 - Open rack
 - BIPV
 - Roof Integrated

Steady State Energy Balance

Absorbed radiation: HDKR model

Sky Temperature: Berdahl and Martin (1984)

Ground temperature

Open rack: AVE(T_{amb})
BIPV: $\bar{h}_{total} = \sqrt[3]{\bar{h}_{forced}} + h_{free}$

Turbulent forced convection: Schlichting (2000) und qrad,ground,c

Free convection: Raithby and Holland (1998)

Combining forced and free convection:

Power: 5-parameter model

Duffie and Beckman (2006)

$$\underline{S_{abs}} = \underline{\dot{q}_{conv,c}} + \underline{\dot{q}_{conv,b}} + \underline{\dot{q}_{rad,sky,c}} + \underline{\dot{q}_{rad,sky,b}} + \underline{\dot{q}_{rad,ground,c}} + \underline{\dot{q}_{rad,ground,b}} + \underline{P_{mp}}$$

Validation Data

- Building Integrated
 - > NIST, Maryland
 - South wall vertical mounting, backside insulated
 - Mono-Si, 6 mm glass cover
 - Poly-Si, ETFE cover
 - Wind speed measured near panel

- Open Rack
 - Sandia (NM) mono-Si panel
 - > NREL (CO) HIT panel
 - Fixed tilt = latitude

Additional Cell Temperature Models Evaluated

Duffie and Beckman (2006)

$$\frac{T_{cell} - T_{amb}}{T_{NOCT} - T_{amb,NOCT}} = \left(\frac{9.5}{5.7 + 3.8 \times u}\right) \times \left(\frac{S - P_{mp}}{S_{NOCT}}\right)$$

Skoplaki (2008)

$$T_{cell} = T_{amb} + \omega_m \left(\frac{0.32}{8.91 + 2u_{\infty}} \right) G_T$$

where ω_m is dependent on the mounting of the panel

King (2004)

$$T_1 = G_T \times exp \ a + b \times u_{\infty} + T_{amb}$$

$$T_{cell} = T_I + \Bigg(rac{G_T}{G_{T,ref}}\Bigg) \Delta T$$

where a, b, and ΔT are empirically (mounting and panel specific) determined coefficients.

Cell Temperatuure Model Comparison: Skoplaki vs. Duffie and Beckman

Assumptions and Inputs				
Duffie & Beckman	Skoplaki			
Installed NOCT	Open-rack NOCT = 47 C			
	Mounting coefficient, $\omega = 2.4$			
Calculated Absorbed Radiation	au = 0.9			
Calculate power output from 5-parameter model	Constant cell efficiency = 0.12			
$h = 8.91 + 2u_{\infty}$	$h = 5.7 + 3.8u_{\infty}$			

Simulation Procedure

Annual Simulation Results

Summary of Simulation Results

- > 5-parameter model with measured cell temperature results in <4.5% annual energy prediction error.
- All cell temperature model results for open rack panels are consistent and accurate when compared against 5-parameter model with measured temperature (backside) input.
- Greatest divergence of cell temperature model results observed for BIPV panels.
 - Skoplaki & Duffie and Beckman results become less accurate. Why?

Explanation of Cell Temperature Model Divergence

Hypothesis: For integrated mountings, measured NOCT becomes a less accurate estimate of cell temperature at testing conditions.

	Open Rack - Sandia	Open Rack - NREL	BIPV (mono-Si)	BIPV (poly-Si)
Assumed NOCT (Skoplaki) [C]	47	47	85	85
Reported NOCT [C]	46	44	67	62
Predicted NOCT [C]	42	43	78	74
Standard Deviation [C]	2.6	1.9	9.0	11.2

- Mounting conditions become more difficult to replicate/predict
- Correction factor chart becomes less accurate

NOCT Correction Factor Plots

IEC NOCT Correction Factor

Correct Factor @ 1.75 m/s, 5 C:

➤ IEC: 0-1°C

Predicted: 6-7°C

Predicted c.f. chart for <u>BIPV</u> mono-Si

Recommendations

- NOCT values for integrated mountings are difficult to measure and may be inaccurate due to
 - Correction factor charts
 - ➤ Inability to measure NOCT under intended mounting conditions
- Improve model prediction by
 - Report actual conditions during NOCT test
 - Develop and use correction factor chart specific to panel mounting

